PyTorch is a machine learning library based on the Torch library, used for applications such as computer vision and natural language processing, originally developed by Meta AI and now part of the Linux Foundation umbrella.
PyTorch provides two high-level features:
- Tensor computing (like NumPy) with acceleration via GPUs
- Deep neural networks built on a tape-based automatic differentiation system
Installation¶
-
The following directions assume a working Conda install.
-
Installation requires proxy access to allow external downloads
DCS (AiMOS) Cluster¶
Setup Conda environment:¶
conda create -n "my_pytorch_environment" python=3.7.13
conda activate my_pytorch_environment
conda config --add channels https://public.dhe.ibm.com/ibmdl/export/pub/software/server/ibm-ai/conda/#/
Install Python in environment:¶
module load gcc
module load spectrum-mpi
module load cuda/11.2
conda install pytorch=1.3.1
NPL (AiMOSx) Cluster¶
Setup Environment:¶
conda create -n "my_pytorch_environment" python=3.10.13
conda activate my_pytorch_environment
Install PyTorch:¶
module load gcc
module load cuda/12.1
conda install pytorch=2.4.1
NGH Cluster¶
COMING SOON!
Troubleshooting¶
-
It is no longer necessary to specify a CUDA by installing "pytorch::pytorch-cuda"
-
If CUDA is not loaded into Pytorch, performance will suffer
Confirm CUDA is enabled:¶
python
import torch
torch.cuda.is_available()
true